UNIVERSITY OF

OXFORD

Probabilistic model checking with PRISM:
an overview

Marta Kwiatkowska

Department of Computer Science, University of Oxford

EQINOCS, Paris, January 2014

What is probabilistic model checking?

Probabilistic model checking...

— is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

Why formal verification?

Errors in computerised systems can be costly...

Pentium chip (1994) Infusion pumps Toyota Prius (2010)
Bug found in FPU. (2010) Software “glitch”
Intel (eventually) offers Patients die because found in anti-lock
to replace faulty chips. of incorrect dosage. braking system.
Estimated loss: $475m Cause: software 185,000 cars recalled.
malfunction.
79 recalls.

. Why verify?

- “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]

Model checking

Finite-state
System model
Result
_>
— v %
~
Model checker [~
— €90 SMV, Spin
Y
OOO —EF fail Counter-
° — —> example
System Temporal logic —Or0r0r0
require- specification

ments

Probabilistic model checking

Probabilistic model
System e.g. Markov chain

0.5 Y 0.4

_} 0.1

QO:: Pooq [Ffail]| mm—

) —>

System

require- Probabilistic
ments temporal logic

specification
e.g. PCTL, CSL, LTL

Probabilistic

model checker

e.g. PRISM

—3 Result

v X

J

B Quantitative
results

— Counter-
example

R

5

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes
. CSMA protocol, 802.11 Wireless LAN
— Random choice of waiting time
. IEEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses
. IPv4 Zeroconf dynamic configuration (link-local addressing)
— Randomised algorithms for anonymity, contract signing, ...

Why probability?

- Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

- To model biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

Verifying probabilistic systems

- We are not just interested in correctness

- We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Discrete Markov chains processes (MDPs)
time (DTMCs) Simple stochastic
games (SMGs)
Probabilistic timed
Conti Continuous-time automata (PTASs)
onttilrlr]]léous Markov chains

(CTMCs)

Interactive Markov
chains (IMCs)

10

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Discrete Markov chains processes (MDPs)
time (DTMCs) Simple stochastic
games (SMGs)
Probabilistic timed
Conti Continuous-time automata (PTASs)
onttilrlr]]léous Markov chains

(CTMCs)

Interactive Markov
chains (IMCs)

11

Overview

Introduction

Model checking for discrete-time Markov chains (DTMCs)
— DTMCs: definition, paths & probability spaces
— PCTL model checking
— Costs and rewards
— Case studies: Bluetooth, (CTMC) DNA computing

PRISM: overview
— Functionality, GUI, etc

PRISM: recent developments
— e.g. multi-objective, parametric, etc

- Summary

12

Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- States

- Transitions

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions

13

Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;;,P,L) where:
— S is a finite set of states (“state space”)
— Si,i¢ € S is the initial state
— P:S xS — [0,1]is the transition probability matrix
where 2., P(s,s’) = 1 forall s € S

— L:S — 2APjs function labelling states with atomic
propositions

Note: no deadlock states
— i.e. every state has at least
one outgoing transition
— can add self loops to represent
final/terminating states

14

Paths and probabilities

- A (finite or infinite) path through a DTMC
— is a sequence of states s,5,;5,55... such that P(s;,s;,;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: o

— sample space: Path(s) = set of all 5’;3::

infinite paths from a state s
— events: sets of infinite paths froms 7
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)

15

Probability space over paths

- Sample space Q = Path(s)

set of infinite paths with initial state s

- Event set 2,5

— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpath(s) 1S the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P,(w) = P(s,s;) - ... - P(s,_¢,S,,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths- w
— Pry extends uniquely to a probability measure Prg:3p,,—[0,1]

- See [KSK76] for further details

17

Probability space - Example

Paths where sending fails the first time
— W = 5,55,
— C(w) = all paths starting sys;s,...
— Po(w) = P(sq,s;) - P(sy,S5)
=1-0.01 =0.01
— Pro(C(w)) = Po(w) = 0.01

Paths which are eventually successful and with no failures
— C(50S153) U C(5051571S3) U C(5(5:515153) U ...
— Pro(C(syS;53) U C(545:5:53) U C(555:5151S3) U ...)
= P,5(50S153) + P.(505151S3) + Pp(SpS15151S3) + ...
=1-0.98 + 1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99

18

PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P_y o5 [true U=10 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

19

PCTL syntax

W is true with

- PCTL syntax: / probability ~p

—¢ =truelaldAd| [P (W] (state formulas)
- =X | dUkd | dUD (path formulas)
T o A : T
“ ” “bou nded “ ”
next : i until
............................ until

— define F ¢ = true U ¢ (eventually), G & = —(F =) (globally)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,2}, k e N

- A PCTL formula is always a state formula

— path formulas only occur inside the P operator
20

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the DTMC (S,s,,;,,P,L):

— SEa < a € L(s)
—SE O AP, < sE¢, and s E= ¢,
— s E —¢ < s E ¢ is false
- Examples
— S5 k= succ

— s, E try A —fail

21

PCTL semantics for DTMCs

- Semantics of path formulas:

— for a path w = s45;5,... in the DTMC:

—wEXd S S E

— wkE ¢, Uskdp, < 3Ti<ksuchthats, = b, and Vj<i, s, = b,
-~ wWEO, Ud, < Jk=0 such that w = ¢, U=k ¢,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}

22

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [@ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s E P_g,: [X fail] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [wW] < Prob(s,) ~p
— where: Prob(s, @) = Pr.{ w € Path(s) | w = @ }
— (sets of paths satisfying @ are always measurable [Var85])

L ; 23

Quantitative properties

Consider a PCTL formula P_, [Y]
— if the probability is unknown, how to choose the bound p?

- When the outermost operator of a PTCL formula is P
— we allow the form P_, [@]
— “what is the probability that path formula ¢ is true?”

Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

PRISM [21]

—o—) =0.01
—a—) =0.02
—a—) =0.03
—— L =0.04
Analytical [7]
~%-e- 1-0.01

Example
— P_, [F err/total>0.1]
— “what is the probability

Probability

that 10% of the NAND i i:g‘gg
gate outputs are erroneous?’ - 4- 1=0.04

Number of restorative stages 26

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(S,s,,;,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check thats E d V s €S, i.e. Sat(dp) = S
— sometimes, just want to know if s,... = &, i.e. if 5, ., € Sat(d)

- Sometimes, focus on quantitative results
— e.g. compute result of P=? [F error]
— e.g. compute result of P=? [F=k error] for 0<k<100

27

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_y 45 [—fail U succ]

- For the non-probabilistic operators:

— Sat(true) = S
— Sat(a) ={seS|ael(s)}

— Sat(—$) = S\ Sat(d) / \

— Sat(d, A d,) = Sat(d,) N Sat(d,) & Pooos [+ U -]

. For the P~p [@] operator - %D B é@

— need to compute the
probabilities Prob(s,) © ©
for all statess € S fail fail

— focus here on “until”
case: Y = ¢, U §, 58

b

PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U ¢,) forall s € S
First, identify all states where the probability is 1 or O

— Sves = Sat(P.; [, U ¢,])

— S"o = Sat(P_o [, U,]
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
— two algorithms: ProbO (for S"°) and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

— gives exact results for the states in S¥¢s and S"° (no round-off)

— for P_,[-] where p is 0 or 1, no further computation required
29

PCTL until - Linear equations

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

1 if se S
Prob(s, ¢, U d,) = | 0 if se S™
ZP(s,s')- Prob(s', ¢, U ¢,) otherwise

s'eS
N

— can be reduced to a system in |S?| unknowns instead of |S|
where S = S\ (Sves U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination

— iterative methods, e.g. Jacobi, Gauss-Seidel, ...
(preferred in practice due to scalability)

30

PCTL until - Example

- Example: P_,s[ma UDb]

31

PCTL until - Example

. Example: P_yg[-aUDb]

SnO =
Sat(P_, [-a U b])
1 0.3
a
Syes —
0.1 07 Sat(P., [-aUb])

32

PCTL until - Example

Example: P_,s[-aUDb]

Sno —
Sat(P_, [-a U b])

Let x; = Prob(s, —a U b)

i a
® SOIVe ; Syes _
0.1 07 Sat(P., [-aUb])
—(0
X; = X3 =0 :

Xo = 0.1%,+0.9x, = 0.8
Prob(-aUb) =x=1[0.8,0, 89,0, 1, 1]

Sat(P.og [~aUb]) = {5,545} 33

PCTL model checking - Summary

- Computation of set Sat(®) for DTMC D and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— &, U=k d, : k matrix-vector multiplications, O(k|S|?)
— &, U &, : linear equation system, at most |S| variables, O(|S|3)

- Complexity:

— linear in |®| and polynomial in |S]

34

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined
— (in PCTL, P_,[...] always contains a single temporal operator)
— supported by PRISM
— (not covered in this lecture)

- Another direction: extend DTMCs with costs and rewards...

35

Costs and rewards

We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless

36

Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period

37

DTMC reward structures

For a DTMC (S,s;,;,P,L), a reward structure is a pair (p,U)
— p:S — R_,is the state reward function (vector)
— L:S XS - R_,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and ris zero
(equivalently, p is zero and returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and v as the energy cost of
each transition 38

PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

expected :
. reward is ~r

— wherer e R_,, ~ € {<,>,<,2}, ke N

R.. [-] means “the expected value of - satisfies ~r”

39

Reward formula semantics

- Formal semantics of the three reward operators

— based on random variables over (infinite) paths

- Recall:

-sEP,[Ww] & Pry{wePath(s) | w=Y}~p

For a state s in the DTMC (see [KNPO7a] for full definition):
—sER_[IFK] < Exp(s, X_) ~r
—sER_[C=k] & Exp(s, Xc) ~r
—sSER,[F®] < Exp(s, Xpe) ~ T

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

41

Model checking reward properties

Instantaneous: R_, [I7¢]
+ Cumulative: R_, [C=k]

— variant of the method for computing bounded until
probabilities

— solution of recursive equations

Reachability: R_, [F ¢]
— similar to computing until probabilities
— precomputation phase (identify infinite reward states)
— then reduces to solving a system of linear equation

For more details, see e.g. [KNPO7a]
— complexity not increased wrt classical PCTL

43

PCTL model checking summary...

Introduced probabilistic model checking for DTMCs
— discrete time and probability only
— PCTL model checking via linear equation solving
— LTL also supported, via automata-theoretic methods

. Continuous-time Markov chains (CTMCs)

— discrete states, continuous time
— temporal logic CSL

— model checking via uniformisation, a discretisation of the
CTMC

Markov decision processes (MDPs)

— add nondeterminism to DTMCs
— PCTL, LTL and PCTL* supported
— model checking via linear programming

44

PRISM

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source software (GPL), runs on all major OSs

Construction/analysis of probabilistic models...

— discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, ...

Simple but flexible high-level modelling language
— based on guarded commands; see later...

Many import/export options, tool connections
— in: (Bio)PEPA, stochastic tr-calculus, DSD, SBML, Petri nets, ...
— out: Matlab, MRMC, INFAMY, PARAM, ...

45

Model checking for various temporal logics...
— PCTL, CSL, LTL, PCTL*, rPATL, CTL, ...
— quantitative extensions, costs/rewards, ...

- Various efficient model checking engines and techniques

— symbolic methods (binary decision diagrams and extensions)
— explicit-state methods (sparse matrices, etc.)

— statistical model checking (simulation-based approximations)

— and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

Graphical user interface
— editors, simulator, experiments, graph plotting

See: http://www.prismmodelchecker.org/
— downloads, tutorials, case studies, papers, ...

46

PRISM GUI: Editing a model

8 00 PRISM 4.1

File Edit Model Properties Simulator Log Options

Ao [o/e[m]x]

PRISM Model File: /Users/dxp/prism-www/tutorial/examples/power/power_policyl.sm

+ Model: p.ower_pollcyl‘sm : e IT———————————_————_————
@ Type: CTMC 10
@ I Modules 11| // Service Queue (50Q)
? sQ 12| // Stores requests which arrive Into the system to be processed.
9 9q 13
® min: 0 : 14| // Maximum queue size
® max: g_max 15| const int q_max = 20;
@ init: 0 A 16
] SP 17| // Request arrival rate
® dsp 18| const double rate_arrive = 1/0.72; // (mean Inter-arrival time Is 8.72 seconds)
® min: 0 19
® max: 2 20| module 50
e init: 0 I
PM 22 /S q = number u:" f‘euuesfs currently In queue
@ 3 Constants 33 q : [0..q_max] init 0;
©- @ q_max : Int 25 // A request arrives
©- @ rate_arrive : double 26 [request] true -> rate_arrive : (q'=min(q+1,q_max));
© @ rate_serve : double 27 // A request Is served
Lo rate_s2i double 28 [serve]l g>1 -> (q'=q-1);
©- @ rate_i2s : d_ouble 29 // Last request Is served
©- @ q_trigger : int 39 [serve_last] g=1 -> (q'=g-1);
31
32 endmodule
33
B -
as
36| // Service Provider (SP)
37| // Processes requests from service queve.
38| // The 5P has 3 power states: sleep, Idle and busy
39
48| // Rate of service (average service time = @.008s)
41| const double rate_serve = 1/0.008;
Built Model 42| // Rate of switching from sleep to Idle (average transition time = 1.65)
States: 42 43| const double rate_s2i = 1/1.6;
44| // Rate of switching from Idle to sleep (average transition time = 8.675)
Initial states: 1 45| const double rate_i2s = 1/0.67;
Transitions: 81 6 vl

| Model

Building model... don. |
- —
47

PRISM GUI: The Simulator

e 00 PRISM 4.1
File Edit Model Properties Simulator Log Options
el o | e
Automatic exploration Manual exploration : (State labels } Path formulae] Path information]
| simulate Module/(action] | Rate Update 5 init
» Left 0.006 left_n'=2 ¥ deadlock
| teps |t Right 0.002 right_n'=0 & mini
a - inimum
Backtracking Line 2.0E-4 line_n'=false XK premium
[Q ik Toleft 2.5E-4 mle.h_n'=lallse
[startLeft) 10.0 left'=true, r'=true
[Steps i ‘ h [¥ Generate time automatically
-
Path
Step Time Left Right Repair... Line Toleft ToRight Rewards
Action J # |Time (+) left_n | left right_n ‘ right r line [line_n toleft ‘ toleft_n | toright Itorighl_n "perce...‘ '!tme_...[[“num..
0o |0 (false % (false) | (false) | (true) | (false) | (true) | (false) | (true @ ©
Right 1 12.0649 4
ToRight 2 |12.0806 (false
[startRight] 3 12.1674 true 8
[repairRight] 4 12.2677 ® false 0
Left 5 12.2809
Left 6 12.3071
Left 7 |12.3446 @
Left 8 12.3653
Right 9 12.4059)}
[startLeft] 10 |12.4583 true
[repairLeft] 11 15.6657 (false)
[startLeft] 12 |15.6834 (true)
[repairLeft) 13 |15.7585 @
Right 14 15.8505 3
Right 15 |15.874
Right 16 15.9084 | ! I , L , L L L ! C

I Model [Properties I Simulator LLog I

[Loading model... done.

48

PRISM GUI: Model checking and graphs

8 00 PRISM 4.1
| Eile Edit Model Properties Simulator Log Options
al 3 5 [5] [B
Properties list: /Users/dxp/prism-www/tutorial/examples/power/power.csl*
Properties 4|, Experiments
»
P=? [F[T,T) q=q_max | . ')
S=?[q=q_max]
& Re7[1aT] Property | Defined Const..| Progress Stats | Method
¥ R=2(5) R=7[1=T]) T=0:1:40 Done Verification
" Ri — R=7[1=T] q_trigger=3:3... Done Verification
N <1. -
= l R=7[I=T] q_trigger=5,T... Done Verification
K R<2(5] R=?[1=T] q_trigger=5,T... Done Verification
R=?[S] q_trigger=2:1... Done Verification
R=?[S] q_trigger=2:1... 49 Stopped Verification
What is the long-run expected size of the queue?
Constants ((Graph 1| Graph2
Name I Type Value Z Expected queue size attime T
T int
12.5 1
- 10.0 o
g f \' e e ¥ -y - i -
$ 7s5) e \\ gt ey qu!gger—E
- N S S SIS SR SR -=-q_trigger=6
Labels g - Wy - q_trigger=9
Name Definition g 509 \"v"'"'""” --q_trigger=12
b} "-1.. - -+ q_trigger=15
2.5 1 q_trigger=18
0.0 = = ; = .
0 10 15 20 25 30 35 40
T

W Properties lelllmr LE’J

Verifying properties... done.

49

PRISM - Case studies

Randomised distributed algorithms

— consensus, leader election, self-stabilisation, ...
Randomised communication protocols

— Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
Security protocols/systems

— contract signing, anonymity, pin cracking, quantum crypto, ...
Biological systems

— cell signalling pathways, DNA computation, ...
Planning & controller synthesis

— robotics, dynamic power management, ...
Performance & reliability

— nanotechnology, cloud computing, manufacturing systemes, ...

See: www.prismmodelchecker.org/casestudies

50

Case study: Bluetooth

— performance essential for this phase

A,
. e T oy j) \\\1‘3\%%;%33:%\21
- Complex discovery process (CUIKES e CER R
! "?"1, PRk Y %D‘:rz%q"\ N " %\t*\;)\%l

— two asynchronous 28-bit clocks MOgk 1B} oG AR
— pseudo-random hopping between 32 frequencies &% ikt ks
— random waiting scheme to avoid collisions PR e

— 17,179,869,184 initial configurations
(too many to sample effectively)

—

- -
- Probabilistic model checking B |
— e.g. “worst-case expected discovery time EO'G -
is at most 5.17s” g o4l oo
“ -y . . E p—
— e.g. “probability discovery time exceeds %02 —exact
6s is always < 0.001” 3 e "fe”"e‘l

— shows weaknesses in simplistic analysis -

Case study: DNA programming

DNA: easily accessible, cheap to synthesise information
processing material

DNA Strand Displacement language, induces CTMC models
— for designing DNA circuits [Cardelli, Phillips, et al.]
— accompanying software tool for analysis/simulation
— now extended to include auto-generation of PRISM models

- Transducer: converts input <tA x> into output <y tA>

a Y

—
t

a X t ¥ t a t

Formalising correctness: does it finish successfully?...
— A [G "deadlock” => "all_done"]

— E[F "all_done"] (CTL, but probabilistic also...) -

Transducer flaw

- PRISM identifies a 5-step trace to the a (1)
“bad” deadlock state i

— problem caused by “crosstalk”
(interference) between DSD species
from the two copies of the gates te2 a2 (1)

— previously found manually [Cardelli’10] R
— detection now fully automated

- Bug is easily fixed
— (and verified)

reactive gate

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0) T T (1)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) '
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) a2 a E =
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0) T T T e (1)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0) ' oo

PRISM: Recent & new developments

Major new features:
1. multi-objective model checking
2. parametric model checking
3. real-time: probabilistic timed automata (PTAS)
4. games: stochastic multi-player games (SMGs)

Further new additions:
— strategy (adversary) synthesis (see ATVA’13 invited lecture)
— CTL model checking & counterexample generation

— enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

— efficient CTMC model checking
(fast adaptive uniformisation) [Mateescu et al., CMSB'1 3]

— benchmark suite & testing functionality [QEST'1 2]
www.prismmodelchecker.org/benchmarks/

54

1. Multi-objective model checking

Markov decision processes (MDPs)
— generalise DTMCs by adding nondeterminism {heads}
— for: control, concurrency, abstraction, ...

{init} 5 1

Strategies (or "adversaries”, "policies"”)

— resolve nondeterminism, i.e. choose an
action in each state based on current history 0.3 ftails}

— a strategy induces an (infinite-state) DTMC

- Verification (probabilistic model checking) of MDPs
— quantify over all possible strategies... (i.e. best/worst-case)
— P_g o[F err]: “the probability of an error is always < 0.01”

Strategy synthesis (dual problem)

— "does there exist a strategy for which the probability of an
error occurring is < 0.017”

— “how to minimise expected run-time?” 2>

1. Multi-objective model checking

Multi-objective probabilistic model checking

— investigate trade-offs between conflicting objectives

— in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

— multi(P. g5 [F transmit], Rtme_. /[C])
Numerical queries

— e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

— multi(P,,,,,_- [F transmit], Rtme_. [C])

N
-

. o1
Pareto queries DN
° e
— e.g. "Pareto curve for maximising probability e o N
of transmission and expected battery life-time” | =~ °
. o o E \
— multi(P, ., [F transmit], Rtme___ [C]) —>

Case study: Dynamic power management

Synthesis of dynamic power management schemes
— for an IBM TravelStar VP disk drive
— 5 different power modes: active, idle, idlelp, stby, sleep

— power manager controller bases decisions on current power
mode, disk request queue, etc.

Build controllers that

— minimise energy
consumption, subject to
constraints on e.g.

— probability that a request .
waits more than K steps 2.0

— expected number of
lost disk requests

ti
[\S)
=)
o
o

o

- -
o v
o o
o o

500

min power consumptio

See: http://www.prismmodelchecker.org/files/tacas11/ >7

Conclusion

Introduction to probabilistic model checking
- Overview of PRISM

More models and logics
— continuous-time Markov chains
— Markov decision processes
— probabilistic timed automata
— stochastic multi-player games

Related/future work
— quantitative runtime verification [TSE’11,CACM’12]
— statistical model checking [TACAS'04,STTT’06]
— multi-objective stochastic games [MFCS’13,QEST’13]
— verification of cardiac pacemakers [RTSS’12, HSCC’13]
— probabilistic hybrid automata [CPSWeek’13 tutorial]

58

References

Tutorial papers

— M. Kwiatkowska, G. Norman and D. Parker. Stochastic Mode/
Checking. In SFM'07, vol 4486 of LNCS (Tutorial Volume), pages 220-
270, Springer. June 2007.

— V. Forejt, M. Kwiatkowska, G. Norman and D. Parker. Automated
Verification Techniques for Probabilistic Systems. In SFM'11, volume
6659 of LNCS, pages 53-113, Springer. June 2011.

— G. Norman, D. Parker and J. Sproston. Mode/ Checking for
Probabilistic Timed Automata. Formal Methods in System Design,
43(2), pages 164-190, Springer. September 201 3.

— M. Kwiatkowska, G. Norman and D. Parker. Probabilistic Mode/
Checking for Systems Biology. In Symbolic Systems Biology, pages 31-
59, Jones and Bartlett. May 2010.

PRISM tool paper

— M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Proc. CAV'11, volume 6806 of
LNCS, pages 585-591, Springer. July 2011.

59

Acknowledgements

My group and collaborators in this work

Project funding
— ERC, EPSRC, Microsoft Research
— Oxford Martin School, Institute for the Future of Computing

+ Seealso
— VWARL www.veriware.org

— PRISM www.prismmodelchecker.orqg

60

